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The nonlinear group velocity of a laser pulse propagating in a cold underdense unmagnetized plasma
is examined. Analytical expressions for the group velocity are derived for various pulse length regimes.
These expressions reduce to the usual dw/dk form for small amplitude and are verified for aribtrary am-
plitude using particle in cell simulations on a cyclic mesh. We find that the leading edge of a pulse
moves at the linear group velocity and that the phase velocity of the excited wake is less than the group
velocity of the pulse for symmetrically shaped pulses. The techniques used can be applied to other waves

in a plasma.

PACS number(s): 52.40.Db, 52.35.Mw, 52.40.Nk

I. INTRODUCTION

It has been recognized since the time of Rayleigh [1]
that, besides the phase velocity v, there are several ve-
locities associated with a wave which have physical
significance. Rayleigh defined the group velocity to be
the velocity of the envelope of a beat pattern constructed
from two waves (w,k;) and (w,,k,). This velocity is
given by (0, —w,)/(k; —k,)=Aw/Ak, which reduces to
the often quoted result v, =0w/0k in the limit that Ae
and Ak approach zero. Other velocities associated with a
wave are the energy transport velocity [1], signal velocity
[1], and the packet velocity [1].

In particular, for a plane electromagnetic wave propa-
gating in an unmagnetized plasma it is well known that
the group velocity is given by
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where o, is the plasma frequency and o is the elec-

tromagnetic wave’s frequency. In addition, the phase and
group velocities are related by v, v, =c¢2. Furthermore, it
can be shown that both the energy transport velocity and
the packet velocity are equal to v,. However, these rela-
tionships are only true in the limit of infinitesimal wave
amplitude. To understand the complications which arise
for finite wave amplitude, consider Rayleigh’s definition
of the group velocity in terms of the beat velocity of two
weakly nonlinear waves. Each wave now satisfies a gen-
eric dispersion relation which depends on the amplitude
of both waves w,(k,k,, A, 4,) and w,(k,k,, A}, 4,)
where A4, and A4, are some measure of the wave ampli-
tudes. Therefore, calculating Aw/Ak of two waves or
dw /9k of one wave is now ambiguous because it depends
on whether 4, A4,, or some combination of both is kept
fixed. This will be explicitly demonstrated in the next
section. Furthermore, for a wave packet with a spectrum
of frequencies, rather than a few discrete modes, it be-
comes impossible even to define a dispersion relation. As
a result, there appears to be little in the literature con-
cerning or even defining a nonlinear group velocity. An
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exception is the work of Lighthill [2] and Whitham [3]
who considered systems with identifiable Lagrangians.
They find that the only velocity with a well defined non-
linear counterpart is the energy transport velocity. In
particular, Lighthill showed that the energy transport ve-
locity is equal to dw/dk when holding the average La-
grangian density (L) divided by the frequency o fixed,
i.e., v, =(0w/0k ) ) ,,- However, this method only gives
the correct energy transport velocity if the Legendre
transformation of .L ( i.e., the Hamiltonian density) is
equal to the physical energy density. For an arbitrary
system this need not be the case and the velocity obtained
may represent the flow of some quantity other than the
energy.

Besides being of fundamental importance to nonlinear
plasma physics, a nonlinear group velocity has practical
implications for laser driven accelerator schemes. In ei-
ther the plasma beat wave accelerator (PBWA) [4] or the
laser wakefield accelerator (LWFA) [S] schemes the large
transverse electric fields of high intensity lasers are con-
verted into longitudinal electric fields of plasma waves.
These plasma waves are used to accelerate particles to
high energies. The longitudinal wave must have a phase
velocity very close to the speed of light ¢ in order that ac-
celerated particles and the wave do not dephase. It is
straightforward to show [5] that the maximum energy
gain W™ of an electron in a plasma wave of amplitude ¢
is given by

max=4e7,¢23mcz , 2)

where 1/%4,:1/(1——1)5,/02), v, is the plasma wave phase
velocity, and 6=e¢/mc2. If one makes the ansatz that
the wakefield phase velocity equals the laser group veloci-
ty then the maximum energy gain is a strong function of
the group velocity. It is therefore useful to define v, as

1

V= (77— . (3)
¢ \/(l—vgz/c2)

It is worthwhile to point out that using the linear group
velocity expression given by Eq. (1) gives
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Ye=—_ . (4)

Akhiezer and Polovin [6] have shown that the non-
linear dispersion relation for purely transverse waves can
be obtained from the linear dispersion relation by replac-
ing w? with 2 /vy, where y2,=1+(eE,/mwc)?*/2 and
E, is the amplitude of the oscillating electric field. The
nonlinear dispersion relation is simply
a)lqu:co; /Y10 +c?k? Physically this corresponds to a
relativistic mass increase from the transverse quiver
motion of the electron in the oscillating electromagnetic
field. Therefore, it may appear that y, for a nonlinear
wave could be obtained by simply replacing cu; with
@} /¥ 10 in Eq. (4), which leads to v, =(w/w,)y}§>. How-
ever, as we will show, simply deriving the group velocity
by renormalizing the plasma frequency is not correct.

In this paper, we first explicitly show that the group
velocity as defined by Rayleigh is ambiguous even in the
weakly nonlinear limit. Next, as done in an earlier Letter
[7], we derive an energy transport velocity valid for arbi-
trary amplitudes using the energy conservation equation.
This expression is unambiguous and reduces to the well
known small-amplitude expression. We then obtain a
closed form expression for the group velocity in the long
pulse limit. The energy conservation equation is then
combined with the quasistatic equations to obtain a non-
linear group velocity for arbitrary pulse lengths. Recent-
ly, Chen and Sudan [8] obtained a Lagrangian density for
the set of relativistic fluid Maxwell equations. We use
this Lagrangian density and the method of Lighthill to
recover the earlier expression for the group velocity. The
analytical results are then verified using particle in cell
(PIC) simulations on a cyclic mesh. We next examine the
nonlinear group velocity obtained by using the quasistatic
equations by themselves. We introduce a Lagrangian
density of the quasistatic equations and use it to derive
two conservation equations. We find that one of the con-
servation equations provides a transport velocity which is
equal to the energy transport velocity obtained earlier.
Lighthill’s method is then applied to the quasistatic La-
grangian density and it is found that it gives an incorrect
expression. The reason is that the Hamiltonian for this
reduced system of equations does not represent the physi-
cal energy. Lastly, the consequences of this work to laser
driven accelerator schemes are discussed.

We note that recently Kuehl ez al. [9] made a weakly
nonlinear analysis of the group velocity and wake excita-
tion of short pulses. We present a fully nonlinear treat-
ment. Furthermore, they concentrated on the times later
than the pump depletion time, while we examine the ear-
ly time behavior which is more relevant to the LWFA.
In most LWFA schemes, Rayleigh diffraction and/or
particle dephasing occurs sooner than pump depletion.
However, if the pulse propagates long enough for pump
depletion to occur then the frequency will decrease by
photon deceleration [10], causing v, to decrease as given
by the linear dispersion relation of Eq. (1).

II. WEAKLY NONLINEAR REGIME

In this section we use the definition of Rayleigh to cal-
culate the group velocity in the weakly nonlinear regime

by evaluating the velocity of the beat pattern of two
waves. The amplitude is expressed in terms of the nor-
malized vector potential a =e A /mc?, where A is the
vector potential. By weakly nonlinear we mean that only
terms O (a?) are kept in the dispersion relations.

Rayleigh’s recipe requires that the system admit a
“beat” solution comprised of two distinct frequencies in
order to evaluate (w;,—w;)/(k;—k,). The two waves
o,k and w,,k, need not be solutions by themselves. In
a general nonlinear system there is usually mixing be-
tween the various frequencies producing a spectrum of
harmonics and sum frequencies rather than two distinct
frequencies. However, in the limit of weak coupling
there exist solutions dominated by just two frequencies
because all of the waves at other frequencies are smaller
by at least a factor of O (a). In this limit coupled disper-
sion relations can be derived. The dispersion relation of a
linearly polarized wave of frequency and wave number
®y,k; in the presence of another linearly polarized light
wave of frequency and wave number w,,k, is given by
(11]

2 2 2

113 w1 o, ai
22— —p? [1—= |2 — p (1
cki=oi—w, 2 14 4w%—a)12, c?
1 (ki+k)? | a3 (5)
4 (a)1+(02)2_w; C2 ’

where the amplitudes of the two light waves are ex-
pressed in terms of the normalized vector potentials
a,=eE,/mow, and a,=eE,/mw,. We note that for
small amplitudes (nonrelativistic) a,, is the transverse
quiver velocity of an electron oscillating in the E , field.

Likewise, the dispersion relation of the second wave at
w,,k, is given by

2_ 2 2
113 0o az
22,2 2|11 |3 __ P |2
ckr;=w3—aw, |1 2 | 4(0%_&): 22
1 (ky+ky)? ai 6)
4 (0,0, —w} | c?

We now subtract Eq. (6) from Eq. (5) and use the rela-
tions

k?—k3=2k6k+0(8k?) , )
03— 03=20d0+0(80?) , (8)
where k=(k,+k,)/2,8k=k,—k,, 0=(0;+®,)/2, and
Sw=w;—w, We assume that the waves are close to the

same frequency and wave number so that we can neglect
the O (8k?) and O(8w?) terms to obtain

20%k8k _ 2000 |B 3 ||al a4}
wlz, - a): 4 8 c?2  c?
1| et a3
—'5 alF—az 2 ) 9)
where
a = (022‘(0,2,2
’ 4w1,2—a>p
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and

(ky+ky)?

B (a)1+a)2)2-a)‘2, )

We now use Eq. (9) to obtain the “beat” velocity of the
two waves. This velocity is the group velocity of Ray-
leigh extended to weakly nonlinear waves and is defined
by

p =20
87 8k
However, in order to evaluate this velocity we must

specify the relative amplitudes of the two waves. It is at
this point that an ambiguity arises.

(10)

A. Equal vector potentials

First we consider holding the vector potentials equal.
Setting a; =a, =v we obtain
2 2

w
2c2k8k=2w8w+7p(a1—a2)% . (11)

The above definitions for 8w and 8k and some algebra
lead to a;—a, =6wdw / (4w2—w[2, )2. Substituting this into
Eq. (11) results in

2 4 —1

2 [0}
_.83 = g& _3_ v "r . (12)
Sk o 2 ¢? (40’ —0})
We see that the correction to the linear result

8w /8k =(k /w)c? is of order a); /o*. We note that for
circularly polarized light waves 8w/8k =(k /w)c? exact-
ly.

B. Equal electric fields

Next we consider the beating of two waves of equal
electric fields. The electric field is proportional to the fre-
quency times the vector potential [E =—(1/¢)(d 4 /dt)].
We therefore set w,a, =w,a, =wv. Equation (9) becomes

10?20 102 @  4k?
2ke28k =2080 |1+ ——5 -4 ——= L
¢ @R 2c¢* w0 4?0’ 40
604
+0 | =% (13)
w

Neglecting O (w0, /o*) terms we obtain

-1
, 2

1 v %
4 2 o?

B0 _ c’k

1+
Sk w

(14)

We note that Eq. (12) can be obtained by evaluating
8w /8k from the weakly nonlinear dispersion relation
m2262k2+a)12,(1—02/4c2) holding v fixed. Likewise Eq.
(14) can be obtained in exactly the same way holding wv
fixed.

The most significant result is that Egs. (12) and (14) are
different to order (a)f, /0*)(v?/c?). This demonstrates an
ambiguity of using Rayleigh’s definition for the group ve-
locity. In the linear limit the velocity of the beats also
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equals the energy transport velocity. In the subsequent
sections we show that the energy transport can be unam-
biguously determined.

III. FULLY NONLINEAR FLUID MODEL

To derive an unambiguous expression for the nonlinear
group velocity, we use the fully nonlinear fluid equations
and Maxwell’s equations, the only approximation being
the neglect of kinetic effects. This is reasonable since we
are dealing with underdense plasmas and v, >>vy, for any
definition of v,, where ¥y, is the thermal velocity. To ob-
tain an energy transport velocity we must derive an ener-
gy continuity equation. Therefore we begin with
Poynting’s equation

d

ot

E*+B’
8

<

+V .

(EXB)+J-E=0 (15)

and the relativistic fluid momentum equation

a
—+V“7 16
at ’ ( )

p=—e E+%XB

where p=myv.

To obtain an expression for J-E, we substitute the curl
of Eq. (16) into Faraday’s law to obtain the relativistic
vorticity equation

ar =V XvX

VXp—%B . (17)

VXp—%B

Therefore, if VXp—(e/c)B=0 initially, then it is true
for all times. This can be rewritten as VX P =0 where we
have used B=V X A and P is the canonical momentum,
P=p—(e/c)A. In other words, if the canonical
momentum is initially irrotational then it remains so.
Substituting B=(c/e)VXp into Eq. (16) and using
pr=m2*y*—1) along with some vector identifies, we
can rewrite the relativistic fluid momentum equation in a
more useful form as

%pZ—eE—i-V(mczy) (18)
and since

J=—nev (19)
we can write

J-E:%(nmczywrv-(nmczyv). (20
Substituting Eq. (20) into Poynting’s equation gives

2 2

9 —E—i_—B—+nmczy +V- LEXB—anczyv =0.
ot 8 41r

(21)

We want the leftmost term of Eq. (21) to be the time



51 GROUP VELOCITY OF LARGE-AMPLITUDE. . . 1367

derivative of the total energy. To achieve this we sub-
tract mc? times the continuity equation

on
Y +V-(nv)

2

mc =0 (22)

from Eq. (21) to obtain the conservation of energy equa-
tion
E’+B’?

T—i—nmcz(‘y—l) J

S

ot

+V- =0. (23

4
- + 2(q, —
2 EXB+nmc“(y—1)v

A local energy transport velocity can be found by noting
the above expression is of the form

S wy+vs)=0, (24)
ot
where U is an energy density and S is an energy flux. We
average Eq. (24) over the high frequency oscillations
({ ») and define a local energy transport velocity as

v—(8)
E=(u) -

We use this definition, rather than v; =(S/U ), because
it is also the time rate of change of the average position of
a finite length pulse. If we define the position of a finite
length pulse as the energy weighted expectation value

fdxxU
fde ’

where the integration is over the length of the pulse, then
the velocity of the pulse, i.e., the group velocity, is given

(25)

(26)

X =

fdxxaU/at_ fde
faxu  [axvu

X =

= % , (27)
U

where the conservation of U, (d /dt) f dx U =0, is impli-
citly used. Therefore, in what follows we refer to the lo-
cal energy transport velocity as the local group velocity
Vg
Using these definitions, we find from Eq. (23) that

_ {(c/4m)EXB+nmc*(y —1)v)
& ((E*+B?)/87+nmciy—1))

Equation (28) is a general expression for the velocity of
energy transport. This technique can also be used for any
wave in a plasma once a solution for the fields is found.
In addition, it could be used to analyze any problem in-
volving energy transport in more than one direction such
as relativistic self-focusing. In this paper we are con-
cerned with the group velocity of electromagnetic waves
propagating in unmagnetized plasmas. It turns out that
the solutions for electromagnetic waves in plasmas de-
pend upon the pulse length as well as polarization.
Therefore we evaluate Eq. (28) for different polarizations
and pulse lengths separately.

(28)

A. Long pulse limit

To determine an analytic expression for the group ve-
locity using Eq. (28) we require analytical solutions for
the fields E, B, v, and v. Akhiezer and Polovin [6] pro-
vide such solutions for waves of the form f(x —v,¢). In
the limit of electromagnetic pulses much longer than
2mc /w,, the longitudinal electric field can be neglected,
and from Faraday’s law E, =(v?%/c)B,. We note that for
linear polarization there is a longitudinal electric field E,
associated with the second harmonic of the transverse
field; however, for wf, /w?*<<1 it is much smaller than E 1
Using the relation that E, =(v,/c)B, we reduce Eq. (28)
to

vg=(202/v¢)
1+(ap /0®)({(y —Dnv, ) /ng)v,/{p?))
14c?/v}+2@] /[ {(y —1)n/ng) /{p)]
(29)

where v, =v, X, p, =eE, /mao.

Expressions for vy can be found in Ref. [6] for both
linearly and circularly polarized light. The expressions
can be summarized as

S S -

1— coﬁ /0™ 1o

where y2,=1+(p?/m2c?). If we define a nonlinear pa-
rameter p,=eE,/mcw, where E, is the amplitude of
electromagnetic wave E |, then {p?/m?2c?)=p3 is used
for circularly polarized light and {p?/c?)=p3 /2 is used
for linearly polarized light. The circular polarization ex-
pression is exact while the linear polarization expression
is valid for } /w®<<1 [6,12,13]. We treat circularly po-
larized light and linearly polarized light separately.

1. Circularly polarized light

For circularly polarized waves there is no density per-
turbation so n =n,. In addition, the electron motion is
purely transverse so v, =0 and {y )=y .. Using the re-
sult of Akhiezer and Polovin [6] we find

2 [0}

1+5=2——2— . (31)
Vs

Substituting this into Eq. (29) gives

cz/v¢
Vg = 2 2 2 ’ (32)
1+(Cl)p/261) )[(Ylo—l)/po—l/Zym]
which reduces to
2
/
€ % , (33)

%8 T 1 (@2 /200 (7 10— /7 07 o+ 1)
> Yo Y10'Y 10 ]

where v, and vy are defined above. We note that Eq.
(33) is exact for circularly polarized light and that no as-
sumptions about colz, /w? are made. Before addressing the
case of linear polarization, we expand Eq. (33) to order

@, /@* to obtain
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2. Linearly polarized light

For linearly polarized light the motion is not purely
transverse so v, 70 and there are density perturbations
driven at the second harmonic, so n5n,. However,
Akhiezer and Polovin [6] have shown that for sufficiently

|

underdense plasmas the dispersion relation Eq. (31) is still
valid for linearly polarized light. We start by noting that
if we have solutions of the form n =n(x —v,t) and
v, =v,(x —v,t) then 3/9t = —v,3/3x and the continuity
equation gives

nv,

=8n=n—n, . (34)
Vg

Inserting nv, =8nv, and Eq. (31) into Eq. (29) we obtain

1+2(w) /0®)[{(y —1)8nv3 ) /c*nop} ]

ve=(c*/vy)

We note that the only difference between Eq. (35) and the
circular polarization result given by Eq. (33) is the

22:,_ ((V—I)Sn)vi

2 2
« noPo

term in the numerator and the

5,9 {(y=18n)
o’ n0P<2)

in the denominator. Since vi —c2~a); /&* these two

terms are equivalent to O (wf, /o*). Also, since
ps~vi—1 and 8n/no~(y}—1)/4y3, [13] these terms
are always small for underdense plasmas. We can cancel
these terms by noting that Eq. (35) is of the form
(1+a)/(1+a+b) which reduces to

(1+a)1l—a—b)=1—b+0(a?b?)

for |al,|b|<<1. Since Eq. (33) is
1/(1+b)~1—b, Egs. (35 and (33)
o (wﬁ /wd).

Therefore for sufficiently underdense plasmas the non-
linear group velocity is the same for both circularly po-
larized and linearly polarized light, and is given by Eq.
(33). For small amplitudes, i.e., y,~1, we recover the
usual relations vy, =c? and v, =9w/3k
=c\/ 1 _“’Z /w?. However, for nonlinear amplitudes this
simple relation between v, and v, does not hold and Eq.
(33) is not recovered by simply differentiating the non-
linear dispersion relation while holding y fixed. Further-
more, it does not reduce to either Eq. (12) or Eq. (14) in
the weakly relativistic limit.

The importance of the nonlinear corrections to the
group velocity can be most easily demonstrated by exam-
ining y,. Substituting Eq. (33) into Eq. (3) gives

of the form
are equal to

1+( /20 (7 10— D /7 10(7 10+ D1+2(e] /) [{(y = 1)8n ) /nopd]

1+ (0 /0*)[{(y =1)8n ) /nopd ]

(35)

7/10-1—1 172

2

©/© (36)

Ve p

in the w, <<® limit. We see that this is not the same as
replacing co; with wf, /Y10 in Eq. (4). Since the energy
gain in the LWFA is proportional to yé this could lead to
a factor of 2 reduction in the electron energy.

Before examining the short pulse regime, we address
the validity of the long pulse limit. The assumption of
wavelike solutions of the form f(x —wv,t) only requires
that the pulse length /, be larger than c/w. This is
reasonable even for short pulses in sufficiently underdense
plasmas. The crucial assumption is the neglect of
wakefield effects. The magnitude of the ponderomotively
excited wakefield E is given by eE /mao,c=mp (z)cz/a)zl%
[14]. The long pulse limit is valid when E| <<E,. This
leads to a condition on the pulse length
Lo, /c>(o, /o) (mpy) /2.

B. Short pulse limit

For pulses which are less than a few plasma wave-
lengths 27c /o, a plasma wakefield is excited and the re-
lation E = (v #/¢)B does not hold. However, if we denote
the laser field with E, and the plasma wakefield with E ,
then E,=(v,/c)B, and B =0. There are several
differences from the long pulse limit. First, E is no
longer small and contributes to the electric field energy
density in the denominator of Eq. (28). Second, 8n and
V, are associated with the wake and not the harmonics,
and therefore they cannot be neglected even for circularly
polarized light. Third, ¥ now contains longitudinal
motion so {y )FY o

When a wake is formed by a short pulse Eq. (34) is not
valid because n is of the form n(x —uv,t), where v, is the
phase velocity of the wake not the light wave. However,
c?—vi~awy/0? so to O(wl/w®) we may write
nv, /c=38n. Using this relationship, E, =(v,/c)B, and
keeping E in the electric field energy density, Eq. (28)
becomes

ve=(c*/vy)

F1+c2 /W) + () /0®)(y —=1) /pg)+(e? /207N E, /pd)+(w? /o)) {(y —1)8n ) /nop}]

) (37)
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where we have assumed circular polarization so {p?)=p3. As in the case of long pulse linearly polarized light, there is
a term in the denominator which is identical to the rightmost term in the numerator. We may cancel these terms if

?
—£ ——7/—< Dén ) <«<1.
w? ”01’0

As before p3=yi,—
max(8n /ngy)~
tions, we can write Eq. (37) as
2

c /vy

y4,/4. Therefore, the condition on neglecting these terms is p, <, /)

1; however, 6n /n, can be large because of wakefield excitation. It has been shown [15] that

2/3, Under these approxima-

v
£ L+ i)+l /o)y —1) /pd)+(e2/2m 0’ c ) E? ) /pd)

We are in the short pulse regime so we make use of the
quasistatic approximation [12] to reduce Eq. (38). The
quasistatic approximation consists of neglecting /97 in
the continuity equation and in the longitudinal equation
of motion after a mathematical transformation has been
made from the (x,¢) to the (§=x —ct,7=t) coordinates.
The physical interpretation of this approximation is that
the laser pulse does not evolve (appears static) during a
pulse duration. The result is a coupled set of nonlinear
equations for the scalar potential ® and the vector poten-
tial A. In a later section we calculate the group velocity
that the quasistatic equations give by themselves. The
quasistatic equations for the normalized potentials
p=ed/mc?and a=e A /mc? are

2 3 1a2

<« 9 2 2_a
c 0601 2 61—2 P14¢ (39)
d? 1,,| 1+a?
—_ , 40)
32" 277 [(1+¢) ] (
J
02/v¢

(38)

[
where k, =, /c.

The quasistatic approximation gives a nonlinear disper-
sion relation of cz/vi =1 ——cof, /w*x, where y=1+¢ and
the normalized potentials are ¢=e®/mc and
a=e A/mc%  Since E,=—V® we can write
eE,/mw,c=—k,dx /0. The main advantage to using
the quasistatic approximation is that it gives a relation
between y and ). The quasistatic approximation gives

I+¢=y(1—v,/c)=y—p,/mc .
This expression and the relationship 7/2=1+a2+p|2|/
m?2c? give
24+
=Ix (41)
2x
where yi=1+a> We substitute c?/vi=1—0?/0%,
eE”/ma) ¢=—k,9x /3§, and Eq. (41) into Eq. (38) to ob-

tain a local value for the group velocity of a light pulse in
the o), 2 /w? << 1 limit,

(42)

§ 1+ (w0} 720M)((1/p§)[ (k23X /BEY +(y

The functional dependence of y is described by

82)( 1 7/1
g 27 (¥

where k, =, /c. For short pulses x is predominantly a
plasma wave wake. This wake is the basis of the LWFA.
The long pulse limit an be recovered by neglecting dy /3§
in Egs. (42) and (43). For arbitrary length pulses it is
difficult to obtain a closed form expression for the local
v, becuase Y must first be solved using Eq. (43) and then

substituted into Eq. (42).

’ (43)

C. Ultrashort limit

We now examine the group velocity for an ultrashort
pulse or, equivalently, for the leading edge of a long
pulse. It has been shown [12] that ¢ grows from the front
of the pulse on w, ! time scales. To see this we assume
¢ <<1 and Eq. (43) becomes

2 =2x)/x1-1/x}

X _¢__ 1k
3g?  3g* ?

We integrate this equation with ¢=03¢/3£=0 at the
front of the pulse (§ =0), to obtain

k6
° 2

Ayvlo—1)=1k2p§ . (44)

(45)

6= |po—5—

For simplicity we have assumed a constant amplitude
pulse, i.e., a square pulse, and set a(§)=p,. A square
pulse will give the largest wakefield; therefore we can as-
sume ¢ <<1 when § <2c¢ /pyw, for any pulse shape.
Using Eq. (45) we find that
2
dE 2 %P
The local group velocity of the very front of a pulse, or

the group velocity of ultrashort pulses I, <<c /@, can be
obtained by letting (3x /35)*=k2¢ and ¢ <<1 in Eq. (42).
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By Taylor expanding in ¢, we find that
1/x=1—¢+0(¢?) and
yi+xi—2x  pit1+(1+¢)2—2(1+4¢)
X (1+¢)pj
=(1—¢)+0(¢?) . (46)

Substituting this into Eq. (42) and neglecting terms of or-
der ¢? we obtain

C2/U¢
-
€ 1+(w12,/2w2)[¢+(1—¢)—(1—¢)]
_ C2/U¢ 47)
1+ (w? 200
Since
L=1——ai’%—(1—¢)+0(¢2>
Vg 20°
we find that
2
@
v, 702 (48)

We therefore conclude that the group velocity for the
leading edge of long pulses, as well as the group velocity
for ultrashort pulses, is the linear group velocity irrespec-
tive of the wave amplitude. A similar result has been
shown [12] for the phase velocity of the leading edge of a
pulse. It is this fact which prevents the relativistic guid-
ing of the leading c /o, of a pulse.

D. Method of Lighthill

Recently, Chen and Sudan [8] obtained a Lagrangian
density for the set of relativistic fluid Maxwell equations.
They found that the appropriate Lagrangian density is
given by

2
1 2_ da
L= (VxaP— |vo+
+oln %ltﬂ/—qs—l +ole, (49)

where V¢y=p—a.

We use this Lagrangian density and the method of
Lighthill to obtain an expression for the group velocity in
the long pulse limit. For simplicity we assume circularly
polarized light. Using the solutions for circularly polar-
ized light given earlier we find that the average Lagrang-
ian density is given by

p?
(L)= (k=P +ald . (50)

Using the relationships y2,=1+p3 and 1+¢=v , we ob-
tain

o1 —1
(L) _Yio (k? fo— o)+l Y10
1) 2
Lighthill’s method gives v, =(dw/3k)(),, Using the

(51)
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fact that
o) —_9f /a8f

where f =(.L) /o, we find that

2c%k /o

b = . (52)
¢ 1+ck? /0?4202 /oMy o 1)

Using Eq. (31) we recover Eq. (33), where ¢ and w, were
reincorporated.

IV. SIMULATIONS

These analytical expressions were investigated using
the electromagnetic particle in cell code ISIS which has
recently been modified to include a cyclic mesh. The cy-
clic mesh is a technique for the following short pulses by
removing columns of cells from far behind the pulse and
placing (cycling) them at the front of the pulse with fresh
particles. The cycling rate is chosen so that the grid
moves at the speed of light ¢. This cyclic mesh code has
been benchmarked with other well established PIC codes.

These simulations are done in the x-y plane with linear
polarization in the z direction. We initialize a laser pulse
in vacuum and let it propagate in the x direction into the
plasma. The initial profile is of the form

ek, Po 0w ., a’ox
c

=———si

ma)pc c (JJP

2 7, (53)

sin

We first verified the expressions for the phase velocity
for both circularly and linearly polarized light. This was
done by tracking the position of wave crests. The scaling
with both y and w/w, was confirmed. The results for
linear polarization are presented in Fig. 1 where we plot
the phase velocity v, versus p, for w/w,=5.0 (solid cir-
cles) and 10.0 (open circles). In addition, we plot the
theoretical phase velocity given by Eq. (30) for the
respective frequencies.

The group velocity was measured by calculating the
pulse’s energy weighted expectation position defined by
JT:fdx fo/fdx E? at every time step and then
evaluating v, =(d /dt)X at the end of the simulation. We
weighted the position using E? rather than the entire en-

1.02
v /c
0
-%-&L.
‘§.~.~‘ S read
1.00 A
0 p 4

FIG. 1. Phase velocity vy versus wave amplitude p, for
@/w,=35 (solid circles) and 10 (open circles) from simulations.
Solid and dashed lines are from Eq. (30) for the respective fre-
quencies.
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ergy U. It can be shown that this gives small errors to v,
in the long pulse limit. To show this we note that U can
be written as

c?
U=-"L {1+ |E2+nmey—1) . (54)
8 u¢
Using the relations 1+cz/v =2— a) /%Y 1o
po=eE,/mcw, and y——1+p0, we can wrlte
E}
=_1 1+——f v) (55)
41
where f(y)=(y—1)/2y(y+1). We note that f(y) van-

ishes for y =1 and ¥ >>1 with a maximum value of 0.08
at y=2. Using this expression for U it is easy to show
that

fdxxU_ fdxfo

)O(w] /w?)

= 1+(f—f

Jaxu  [dx E} AT
+f1f20(0) /0], (56)
where = [dx f(y)xE?/ [dx xE? and
= [dx f(y)E}/[dx E}. Numerical calculations

show that f,—f,~1077; therefore weighting the posi-
tion using E? rather than U is reasonable.

If this is not done in the short pulse limit the calculated
group velocity would be artificially lower than the
theoretical value because the wake left behind the pulse,
being a space charge wave, has zero energy flux but a
nonzero energy density. A typical simulation result is
shown in Fig. 2 for /w,=5.0, py=3, and [;=10c /o,
where we plot X versus tlme We see that in the vacuum
region the curve is flat, indicating a group velocity very
close to the speed of light. Thus the numerical dispersion
associated with the field solver is much less than the plas-
ma dispersion. Numerical dispersion can be controlled
[16] by reducing the grid size 8x and keeping the ratio of
the grid size to the time step 6¢ close to unity. Inside the
plasma the group velocity (the slope of Fig. 2) remains
very constant for many plasma periods, thus allowing for
very accurate measurements. As the pulse propagates
further into the plasma, pump depletion occurs. Pump
depletion results from pulse distortion and a lowering of

5
f <—+—Vacuum
- P
X Deglr:gon
4 0 1 100
t(u)p )

FIG. 2. Weighted expectation position versus time from
computer simulation. The slope of this curve is the group ve-
locity.

1371

80.0 - r r T

FIG. 3. y2=1/(1—v}/c?) versus wave amplitude p, for
®/w,=5. Data points are for simulations with pulse length of
140c /w, and solid line is theory given by Eq. (33). Dotted line
is the result of replacing co,z, with a)f, /v 10 in the linear theory.

the pulse’s frequency which leads to a reduction in v,.
However, from a simple energy conservation analysis it
can be shown that the pump depletion time scales as
wz/m}z, so this does not effect the measurements done ear-
lier on in time.

In Fig. 3 we plot yg, defined by Eq. (3), versus p, for
®/w,=5.0. We chose to plot yg because of its sensitivity
to v,. Any discrepancies in v, resulting from different
deﬁnitions will be enhanced. The solid dots are the result
of using values of v, from the PIC simulations and the
solid line is the result of using Eq. (33) for v,. The simu-
lations were done for numerous values of p, for a long
pulse with a Gaussian rise and fall of /,=20c /w, and a
flat section of 100c /w,. The laser frequency was chosen
to be w/w,=5.0 in order to lessen the computer time.
From Fig. 3 we see excellent agreement between the
theoretical expression Eq. (33) and the PIC result. This
agreement for the long pulse group velocity demonstrates
that weighting the position with E? rather than U is ac-
curate. In addition, we plot (0/w, )7/1/ 2 (dashed line) in
Fig. 3. This clearly shows that replacmg co with o), 2/v 0
in the linear group velocity given by Eq. (4) is 1ncorrect
Simulations using higher values of w/w, were also car-
ried out, and the scaling of Eq. (33) with frequency was
verified. The results are shown in Fig. 4 where we plot v,
versus w for po=2 and Eq. (33). Here we also see very
good agreement between the theoretical expression Eq.

1.00 - -

v /c

0.900 L L
0

FIG. 4. Group velocity v, versus frequency w/w, for
Ppo=2.0. Data points are from simulation and solid line is from
theory.
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FIG. 5. (a) Group velocity v, versus pulse width for p,=3.0
and w/w,=35. Dashed line is an E ? weighted average of Eq.
(33) over the pulse shape. (b) Sketch showing the relative posi-
tions of the laser pulse to density depression (wake) for three
pulse lengths.

(33) and the PIC result.

Simulations of short pulses were also carried out to
verify the implication of Eq. (42). The results are summa-
rized in Fig. 5(a) where we plot the group velocity versus
the pulse width for p,=3.0 and w/w,=5.0. Based on
Eq. (42) we expect the group velocity of a short pulse, i.e.,
Iy Sc/a)p, to approach the linear value. This is con-
sistent with Fig. 5(a) where the dashed line through the
leftmost points approaches the linear v,. No simulation
points are available for smaller values of [, because there
are too few cycles within the pulse to define a single fre-
quency.

The group velocity begins to increase as the pulse
width increases. This occurs because v, decreases and
the dominant term in Eq. (42) is the numerator. Physi-
cally, the increase in v, is due to the reduction of the lo-
cal value of w, caused by the density depression of the
wake and the relativistic mass increase. The relative po-
sitions of the laser pulse to the density depression are il-
lustrated in Fig. 5(b) where we give a sketch for three
different pulse lengths. We see the ultrashort pulse re-
sides entirely in the first density compression. This densi-
ty compression exactly cancels the relativistic mass in-
crease from the quiver velocity. This is the physical
reason why ultrashort pulses move at the linear group ve-
locity (and have the linear phase velocity) regardless of
amplitude. As the pulse length increases the pulse sam-
ples regions of density depression and the group velocity
increases. For longer pulse lengths, regions of the pulse
will again reside in subsequent density compressions.
This leads to a modulation in the group velocity with
pulse length. This scenario is seen in Fig. 5(a) where the
group velocity oscillates as a function of /,. The periodi-
city corresponds to the wake’s wavelength which is a
function of this amplitude, and hence a function of p,.
Similar curves were obtained for other values of p,,.

As the pulse width increases further the group velocity
asymptotes to the long pulse expression. The amplitude
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of the oscillation decreases because the wake’s amplitude
decreases with pulse length. The asymptotic limit is not
that given in Eq. (33) because Gaussian shaped pulses
were used in the simulations of Fig. 5(a). We therefore
calculated an E? weighted average of Eq. (33) over the
pulse shape and this value is plotted as the horizontal
dashed line. The agreement between the calculated value
and the rightmost simulation points is excellent.

A crucial issue for the laser wakefield accelerator is the
dephasing between the particles and the wake. Dephas-
ing is when the particle accelerates so much that it begins
to outrun the wave. As the particle starts to run up the
moving potential hill it gets decelerated. To avoid de-
phasing, v, should be as close to ¢ as possible. Previous-
ly, it has always been assumed that v, =v,. However,
this relation can be altered by pulse shaping, linear or
nonlinear dispersion, photon acceleration or deceleration,
and pulse distortion. We have carried out simulations to
investigate the nonlinear dependence between v, and v,,.
The wake’s phase velocity was determined by tracking
the first minimum of E,. Sample results are presented in
Fig. 6 where v,, (solid circles) and v, (triangles) are plot-
ted versus p, for w/w,=5.0and /[;=6¢c /w,.

We find that v, =v, only for linear values of p, and
symmetric pulses. However, as shown in Fig. 6, as p, in-
creases, v, increases while v, decreases. This opposite
dependence on p, is not paradoxical because the part of
the pulse which is generating the wake need not travel at
the average velocity of the pulse. This point at the front
of the pulse which generates the wake gradually etches
backward due to local pump depletion [17]. As a result,
wakes excited by the leading edge of the laser should
cause the excitation point to etch backward while wakes
excited by the trailing edge of the laser should cause the
excitation point to etch forward. We therefore expect
v, >, for pulses with a long rise time and sharp fall,
and v, <v, for pulses with a sharp rise and a long fall.
Indeed this is what is observed in simulations of such
pulses as shown in Fig. 6. Data points labeled with the
solid squares are for simulations done with a pulse with a
sharp rise (/;=4c/w,) and a long fall (/,=10c/w,),
whereas data points labeled with the open squares are for
simulations done with a pulse with a long rise

1.000 -
Qo
sl ‘
. \\"--,
vg/c a
-
KA
[ ]
0.900
0 4

FIG. 6. Wakefield phase velocity v, (triangle) and pulse
group velocity v, (circle) versus amplitude p, for symmetrically
shaped pulses and v, (squares) for asymmetrically shaped
pulses.
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(lo=10c /w,) and a sharp fall (/,=14c /w,). Clearly, the
pulse with the sharp fall excites a wake with the fastest
phase velocity; it is even faster than that of a symmetric
pulse. Thus tailoring the shape of the laser pulse could

serve as a technique for optimizing energy gain in the
LWFA.

V. QUASISTATIC APPROXIMATION

Recently, much work has been done on nonlinear laser
plasma interactions using the quasistatic equations
[12,14]. In some of these works the emphasis is on phe-
nomena which involve group velocity concepts such as
the wakefield phase velocity in the LWFA and relativistic
self-focusing. Therefore in this section we use the quasi-
static equations to obtain a nonlinear group velocity in
terms of an energy transport velocity. The quasistatic
equations are given in the preceding section as Egs. (39)
and (40).

In order to obtain an energy transport velocity we need
to derive an energy conservation equation. It is well
known that Lagrangian systems admit energy-momentum
conservation equations. We find the following Lagrang-
ian density function which generates Eqgs. (39) and (40):

L(a,aza,¢,0.)= 2¢5+ 1 5a ——lag ‘a,
ki | 1+a?
> 1+ — +¢— ] (57)

where the subscripts £ and 7 denote 3/9£ and 9/9r, re-

spectively. Verifying that this is the Lagrangian density
is easily done by checking that
ai_ial__a_al_o
da 0T da 9§ Oag
and
aL 3L 3L _,
d¢ Ot 0, OE O,

recover Eq. (39) and Eq. (40).

Having a Lagrangian density function, we use the
stress-energy tensor notation of Goldstein [18] and obtain
the following energy conservation equations:

3Ty Ty,

or o& 0 (58
and
aT oT
10 i _p ’ (59)
or 13

where the components of the stress-energy tensor T are
defined by

a.L a.L
Ton=—-¢ +—a —L, (60)
07 3¢, ¢ da, B
a.L oL
T =53 4+ 5= 61
o1 a¢§ ¢T aag ars ( )

_ oL o.L
Tlozw(ﬁg-i- gaé. N (62)

The Ty, component is the Hamiltonian for the system.
Since a Lagrangian which is a function of the two vari-
ables (¢¥,7) admits two conservation equations, we can
define two different velocities for a wave. For mechanical
systems T, is the energy density (Hamiltonian), so we
define the energy transport velocity from Eq. (58) as

(Ty)

Voo =c+ (Toy)

(64)

However, we can also define the transport velocity from
Eq. (59) as
FALITE (65)
Vig=C¢C ,

07T,
where we have used 0/0t =0/37—cd/3§ to express v,
the (x,t) coordinates and { ) represents averaging over
the fast oscillations.

However, for this Lagrangian density of the reduced
set of equations we must explicitly determine what Ty, or
T, represents before identifying either Eq. (64) or Eq.
(64) as the pulse’s group velocity. Using the above ex-
pressions for T;; and Eq. (57) we explicitly find the com-
ponents of T}; to be

1 5 0, ks | 1+a?
=—7 —+
T 2(:2 ¢§+ 1+ ¢— ] (66)
d 1
Tolzgg l% T_—Zc_z-a?r] , (67)
1 .15
Ty czaT ag cag , (68)
1 1+a

From Eq. (68), we see that T, is proportional to the
transverse electromagnetic energy density. To verify this,
we consider the normalized perpendicular energy density
defined by 6, =[(E?+B?)/87]/nomc?. Using the rela-
tions E,=—(1/c)(dA/dt) and B,=0 A /3dz along with
0/0t =9/37—cd /93 and 3/3z =9 /9& we find that

2
glzi_ l_l_ai_

2 2
2a)p c

2 2
?aT-ag-i-Zag (70)

In the quasi-static approximation it is assumed that
0A/37<<9dA/3E, so T\g=—6,. Therefore we use Eq.
(65) to calculate the group velocity.

As with the preceding section, we evaluate Eq. (65) in
the long pulse limit. In this limit the pulse length is
longer than many plasma wavelengths, so no wake is ex-
cited and ¢.=¢,=0. Settlng 3%y /3£2=0in Eq. (39) gives
(1+x)*=1 -I- (a?)=y?, where we have neglected the
harmonics. Assuming that
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ao('r) .
a(r,&)= exp(ik&)+c.c. ,

Eq. (39) gives

da ~ickp2 a, .
— = .C. 71
3 % yloexp(tk§)+cc (71)
and
da __ . .
— =ikagexp(ik€)+c.c. (72)
9
The time averaged component { T, ) is
2
1.,k 2
=—— |k2+ 73
and (T, ) becomes
k2 al
) P 0
= —-1— |Z& 74
<T11> kp(Vio 1) 2k 27/%0 (74)
Using Eq. (65) we find
2
1 @p
-1—— 2 (75)
% (Y10t o?

to order w} /w®. We note that this is identical to expand-
ing Eq. (33) to order w, /»’. This is a significant result
for two reasons. It demonstrates that the transverse field
energy &, moves at the same velocity as the total energy
U to order ) /»®. This validates weighting the position
of the pulse with &, rather than with U when calculating
v, in the simulations. Additionally, contrary to our re-
marks in Ref. [7], the quasistatic equations describe the
nonlinear group velocity correctly to order a)f, /o

It is illustrative to consider the velocity of Eq. (64) in-
stead of Eq. (65). In this case the energy density of the
system is T ) =kp2(7/ 10— 1) and its transport velocity is

k 2

I_Zio_ﬂ _P
2k

v, =c
2
Yio

g

This is the quasistatic result we alluded to in Ref. [7].
The reason this does not agree with Eq. (75) is that this
represents the velocity at which y,, moves and not the
velocity at which &, i.e., { Ty ), moves (energy transport
velocity). Furthermore, this is also the velocity obtained
from the method of Lighthill. To verify this we note
that, in the speed of light variables, Lighthill’s method
gives v, =1+(3Q/0k) ()0, Where Q=w—k. We must
use () rather than o because we consider a plane wave of
the form

a
a(r,é‘):—Ziexp(ikx—icot)-*—c.c.

which in the speed of  light variables
(ag/2)explikE—iQr)+c.c. The averaged Lagrangian
density is given by (L)=—kQa%/2—(y,,—1). Using
the fact that

20
dk

—_9f /of

3k / o’

(LY/Q

where f=(L)/Q along with the dispersion relation
Q=1/ky o we find that
Rt

P

1— Yiotl
2k

7o
The method of Lighthill implicitly assumes that T, is
the physical energy. However, for a Lagrangian that

represents some arbitrary system, Ty, may not represent
the quantity of interest.

Ug—

VI. CONCLUSIONS

In summary, we have investigated several issues con-
cerning the concept of a nonlinear group velocity. First,
the difficulties with defining a nonlinear velocity of a
pulse using the conventional approach of group velocity
are shown in the weakly nonlinear limit. Second, we in-
troduced a more general definition in terms of energy
transport and calculated an analytical expression from
the fully nonlinear fluid equations. In addition, we
showed that the energy transport velocity of an ul-
trashort pulse or, equivalently, the velocity of the leading
edge of a long pulse is that of the linear group velocity.
Third, we used PIC simulations to verify these expres-
sions and examine finite pulse length effects. Last, we ex-
amined the phase velocity of the wakefield in regimes
relevant to the LWFA. We find that the wake’s phase ve-
locity v, is not simply give by the driving pulse’s group
velocity. The relation between v, and v, depends on the
pulse shape. In particular, v,, <v, for symmetric pulses.

To illustrate the importance of this decrease in v,, for
symmetric pulses in possible near term experiments, we
simulated /w, =20 and p,=2.0. This corresponds to a
35 fs, 1 um laser pulse with 7 =5 X 10'® W/cm? propaga-
ting through a plasma of n =4 X 10" cm 3. We find that
yZ=230 while the analytic y;=550. Therefore the max-
imum energy gain is half of what is naively expected.
However, if we use a pulse with a slow rise time and a
fast fall we find y; =600.
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